Profiling Howto
To choose an appropriate propagation method and parameters for a given problem, it is essential to benchmark and profile the propagation.
Consider the following simple example:
using QuantumControlTestUtils.RandomObjects: random_dynamic_generator, random_state_vector
tlist = collect(range(0, step=1.0, length=101));
N = 200; # size of Hilbert space
H = random_dynamic_generator(N, tlist);
Ψ₀ = random_state_vector(N);BenchmarkTools
The first line of defense is the use of BenchmarkTools. The @benchmark macro allows to generate statistics on how long a call to propagate takes.
Chebychev propagation
For example, we can time the propagation with the Chebychev method:
using BenchmarkTools
using QuantumPropagators
using QuantumPropagators: Cheby
@benchmark propagate($Ψ₀, $H, $tlist; method=Cheby, check=false) samples=10BenchmarkTools.Trial: 10 samples with 1 evaluation per sample.
Range (min … max): 25.231 ms … 26.458 ms ┊ GC (min … max): 0.00% … 0.00%
Time (median): 25.486 ms ┊ GC (median): 0.00%
Time (mean ± σ): 25.681 ms ± 435.273 μs ┊ GC (mean ± σ): 0.00% ± 0.00%
▁▁ ▁ ▁ █ ▁▁ ▁ ▁
██▁▁█▁▁▁█▁▁▁█▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁██▁▁▁▁▁▁█▁▁▁▁▁▁▁▁▁▁▁▁▁█ ▁
25.2 ms Histogram: frequency by time 26.5 ms <
Memory estimate: 1023.67 KiB, allocs estimate: 3264.Newton propagation
Or, the same propagation with the Newton method:
using QuantumPropagators: Newton
@benchmark propagate($Ψ₀, $H, $tlist; method=Newton, check=false) samples=10BenchmarkTools.Trial: 10 samples with 1 evaluation per sample.
Range (min … max): 95.518 ms … 97.874 ms ┊ GC (min … max): 0.00% … 0.00%
Time (median): 96.152 ms ┊ GC (median): 0.00%
Time (mean ± σ): 96.360 ms ± 840.029 μs ┊ GC (mean ± σ): 0.00% ± 0.00%
█ █ ██ ██ █ █ █ █
█▁▁█▁██▁▁▁▁▁▁▁▁██▁▁▁▁▁█▁▁▁▁▁█▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁█▁▁█ ▁
95.5 ms Histogram: frequency by time 97.9 ms <
Memory estimate: 13.09 MiB, allocs estimate: 60296.The result in this case illustrates the significant advantage of the Chebychev method for systems of moderate to small size and unitary dynamics.
When using custom data structures for the dynamical generators or states, @benchmark should also be used to optimize lower-level operations as much as possible, e.g. the application of the Hamiltonian to the state.
TimerOutputs
A lot more insight into the internals of a propagate call can be obtained by collecting timing data. This functionality is integrated in QuantumPropagators and uses the TimerOutputs package internally.
Enabling the collection of timing data
To enable collecting internal timing data, call QuantumPropagators.enable_timings:
QuantumPropagators.enable_timings()The status of the data collection can be verified with QuantumPropagators.timings_enabled.
Chebychev propagation
Since the call to QuantumPropagators.enable_timings invalidates existing compiled code, and to avoid the compilation overhead showing up in the timing data, we call propagate once to ensure compilation:
propagate(Ψ₀, H, tlist; method=Cheby);In any subsequent propagation, we could access the timing data in a callback to propagate:
function show_timing_data(propagator, args...)
if propagator.t == tlist[end]
show(propagator.timing_data, compact=true)
end
end
propagate(Ψ₀, H, tlist; method=:cheby, callback=show_timing_data);───────────────────────────────────────────────────────────────────
Time Allocations
─────────────── ───────────────
Total measured: 433ms 34.6MiB
Section ncalls time %tot alloc %tot
───────────────────────────────────────────────────────────────────
prop_step! 100 24.6ms 100.0% 127KiB 100.0%
matrix-vector product 1.20k 23.1ms 93.8% 0.00B 0.0%
───────────────────────────────────────────────────────────────────See the TimerOutputs documentation for details on how to print the timing_data.
Alternatively, without a callback:
propagator = init_prop(Ψ₀, H, tlist; method=Cheby)
for step ∈ 1:(length(tlist)-1)
prop_step!(propagator)
end
show(propagator.timing_data, compact=true)───────────────────────────────────────────────────────────────────
Time Allocations
─────────────── ───────────────
Total measured: 47.6ms 496KiB
Section ncalls time %tot alloc %tot
───────────────────────────────────────────────────────────────────
prop_step! 100 24.1ms 100.0% 127KiB 100.0%
matrix-vector product 1.20k 22.5ms 93.6% 0.00B 0.0%
───────────────────────────────────────────────────────────────────The reported runtimes here are less important than the number of function calls and the runtime percentages. In this case, the timing data shows that the propagation is dominated by the matrix-vector products (applying the Hamiltonian to the state), as it should. The percentage would go to 100% for larger Hilbert spaces.
Newton propagation
For the Newton method:
propagate(Ψ₀, H, tlist; method=Newton); # recompilation
propagate(Ψ₀, H, tlist; method=Newton, callback=show_timing_data);───────────────────────────────────────────────────────────────────────────
Time Allocations
─────────────── ───────────────
Total measured: 143ms 15.5MiB
Section ncalls time %tot alloc %tot
───────────────────────────────────────────────────────────────────────────
prop_step! 100 97.9ms 100.0% 13.0MiB 100.0%
arnoldi! 200 42.7ms 43.6% 672B 0.0%
matrix-vector product 2.00k 39.5ms 40.4% 0.00B 0.0%
get Leja points 200 26.9ms 27.5% 0.00B 0.0%
diagonalize_hessenberg_matrix 200 25.6ms 26.2% 9.38MiB 71.9%
evaluate polynomial 200 659μs 0.7% 2.47MiB 19.0%
get Newton coeffs 200 207μs 0.2% 0.00B 0.0%
───────────────────────────────────────────────────────────────────────────We see here that the Newton propagation requires more matrix-vector products (2000 compared to 1200 for Chebychev), partly because the Newton propagator is "chunked" to m_max applications in each "restart" (10 by default, with 2 restarts required to reach machine precision in this case). Moreover, there is significant overhead beyond just matrix-vector multiplication, which will disappear only for significantly larger Hilbert spaces.
Disabling the collection of timing data
There there is a small overhead associated with collecting the timing data, it should not be enabled "in production". To QuantumPropagators.disable_timings function undoes the previous QuantumPropagators.enable_timings:
QuantumPropagators.disable_timings()This again will trigger recompilation of any method that was collecting timing data, removing the associated overhead.