References

[1]
H. Tal-Ezer and R. Kosloff. An Accurate and Efficient Scheme for Propagating the Time Dependent Schrödinger Equation. J. Chem. Phys. 81, 3967 (1984).
[2]
R. Kosloff. Time-Dependent Quantum-Mechanical Methods for Molecular Dynamics. J. Chem. Phys. 92, 2087 (1988).
[3]
M. Berman, R. Kosloff and H. Tal-Ezer. Solution of the time-dependent Liouville-von Neumann equation: dissipative evolution. J. Phys. A 25, 1283 (1992).
[4]
R. Kosloff. Propagation Methods for Quantum Molecular Dynamics. Annu. Rev. Phys. Chem. 45, 145 (1994).
[5]
G. Ashkenazi, R. Kosloff, S. Ruhman and H. Tal-Ezer. Newtonian propagation methods applied to the photodissociation dynamics of I$_3^{-}$. J. Chem. Phys. 103, 10005–10014 (1995).
[6]
D. Lucarelli. Quantum optimal control via gradient ascent in function space and the time-bandwidth quantum speed limit. Phys. Rev. A 97, 062346 (2018).
[7]
S. Machnes, E. Assémat, D. Tannor and F. K. Wilhelm. Tunable, Flexible, and Efficient Optimization of Control Pulses for Practical Qubits. Phys. Rev. Lett. 120, 150401 (2018).
[8]
J. J. Sørensen, M. O. Aranburu, T. Heinzel and J. F. Sherson. Quantum optimal control in a chopped basis: Applications in control of Bose-Einstein condensates. Phys. Rev. A 98, 022119 (2018).
[9]
M. H. Goerz. Optimizing Robust Quantum Gates in Open Quantum Systems. Ph.D. Thesis, Universität Kassel (2015).
[10]
H. Tal-Ezer. On Restart and Error Estimation for Krylov Approximation of $w=f(A)v$. SIAM J. Sci. Comput. 29, 2426 (2007).
[11]
T. Caneva, T. Calarco and S. Montangero. Chopped random-basis quantum optimization. Phys. Rev. A 84, 022326 (2011).