References
- [1]
- N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen and S. J. Glaser. Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J. Magnet. Res. 172, 296 (2005).
- [2]
- P. de Fouquières, S. G. Schirmer, S. J. Glaser and I. Kuprov. Second order gradient ascent pulse engineering. J. Magnet. Res. 212, 412 (2011).
- [3]
- M. H. Goerz, S. C. Carrasco and V. S. Malinovsky. Quantum Optimal Control via Semi-Automatic Differentiation. Quantum 6, 871 (2022).
- [4]
- H. Tal-Ezer and R. Kosloff. An Accurate and Efficient Scheme for Propagating the Time Dependent Schrödinger Equation. J. Chem. Phys. 81, 3967 (1984).
- [5]
- D. L. Goodwin and I. Kuprov. Auxiliary matrix formalism for interaction representation transformations, optimal control, and spin relaxation theories. J. Chem. Phys. 143, 084113 (2015).
- [6]
- M. H. Goerz, D. Basilewitsch, F. Gago-Encinas, M. G. Krauss, K. P. Horn, D. M. Reich and C. P. Koch. Krotov: A Python implementation of Krotov's method for quantum optimal control. SciPost Phys. 7, 080 (2019).
- [7]
- Z. Tošner, T. Vosegaard, C. Kehlet, N. Khaneja, S. J. Glaser and N. C. Nielsen. Optimal control in NMR spectroscopy: Numerical implementation in SIMPSON. J. Magnet. Res. 197, 120 (2009).
- [8]
- H. J. Hogben, M. Krzystyniak, G. T. Charnock, P. J. Hore and I. Kuprov. Spinach – A software library for simulation of spin dynamics in large spin systems. J. Magnet. Res. 208, 179 (2011).
- [9]
- C. A. Ryan and contributors, pulse-finder: Matlab code for GRAPE optimal control in NMR (2013).
- [10]
- J. R. Johansson, P. D. Nation and F. Nori. QuTiP 2: A Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184, 1234 (2013).
- [11]
- N. Wittler, F. Roy, K. Pack, M. Werninghaus, A. S. Roy, D. J. Egger, S. Filipp, F. K. Wilhelm and S. Machnes. Integrated Tool Set for Control, Calibration, and Characterization of Quantum Devices Applied to Superconducting Qubits. Phys. Rev. Applied 15, 034080 (2021).
- [12]
- M. Rossignolo, T. Reisser, A. Marshall, P. Rembold, A. Pagano, P. J. Vetter, R. S. Said, M. M. Müller, F. Motzoi, T. Calarco, F. Jelezko and S. Montangero. QuOCS: The quantum optimal control suite. Comput. Phys. Commun. 291, 108782 (2023).
- [13]
- M. Zhang, H.-M. Yu, H. Yuan, X. Wang, R. Demkowicz-Dobrzański and J. Liu. QuanEstimation: An open-source toolkit for quantum parameter estimation. Phys. Rev. Research 4, 043057 (2022).
- [14]
- [15]
- C. Rackauckas and Q. Nie. DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia. J. Open Res. Softw. 5 (2017).
- [16]
- M. H. Goerz, E. J. Halperin, J. M. Aytac, C. P. Koch and K. B. Whaley. Robustness of high-fidelity Rydberg gates with single-site addressability. Phys. Rev. A 90, 032329 (2014).
- [17]
- B. Dash, M. H. Goerz, A. Duspayev, S. C. Carrasco, V. S. Malinovsky and G. Raithel. Rotation sensing using tractor atom interferometry. AVS Quantum Science 6, 014407 (2024).
- [18]
- J. P. Palao and R. Kosloff. Optimal control theory for unitary transformations. Phys. Rev. A 68, 062308 (2003).
- [19]
- B. Kraus and J. I. Cirac. Optimal Creation of Entanglement Using a Two-Qubit Gate. Phys. Rev. A 63, 062309 (2001).
- [20]
- P. Watts, J. Vala, M. M. Müller, T. Calarco, K. B. Whaley, D. M. Reich, M. H. Goerz and C. P. Koch. Optimizing for an arbitrary perfect entangler: I. Functionals. Phys. Rev. A 91, 062306 (2015).
- [21]
- M. H. Goerz, G. Gualdi, D. M. Reich, C. P. Koch, F. Motzoi, K. B. Whaley, J. Vala, M. M. Müller, S. Montangero and T. Calarco. Optimizing for an arbitrary perfect entangler. II. Application. Phys. Rev. A 91, 062307 (2015).
- [22]
- I. Kuprov and C. T. Rodgers. Derivatives of spin dynamics simulations. J. Chem. Phys. 131, 234108 (2009).
- [23]
- N. Leung, M. Abdelhafez, J. Koch and D. Schuster. Speedup for quantum optimal control from automatic differentiation based on graphics processing units. Phys. Rev. A 95, 042318 (2017). Implementation on GitHub at
https://github.com/SchusterLab/quantum-optimal-control
. - [24]
- M. Abdelhafez, D. I. Schuster and J. Koch. Gradient-based optimal control of open quantum systems using quantum trajectories and automatic differentiation. Phys. Rev. A 99, 052327 (2019).
- [25]
- M. Abdelhafez, B. Baker, A. Gyenis, P. Mundada, A. A. Houck, D. Schuster and J. Koch. Universal gates for protected superconducting qubits using optimal control. Phys. Rev. A 101, 022321 (2020).
- [26]
- M. Innes and contributors. Zygote.jl: 21st century AD (2022).
- [27]
- M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu and X. Zheng. TensorFlow: A system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16) (2016); p. 265.
- [28]
- K. B. Petersen and M. S. Pedersen. The Matrix Cookbook (Technical University of Denmark, 2012).
- [29]
- A. P. Peirce, M. A. Dahleh and H. Rabitz. Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. Phys. Rev. A 37, 4950 (1988).
- [30]
- A. Borzì, G. Stadler and U. Hohenester. Optimal quantum control in nanostructures: Theory and application to a generic three-level system. Phys. Rev. A 66, 053811 (2002).
- [31]
- U. Hohenester, P. K. Rekdal, A. Borzì and J. Schmiedmayer. Optimal quantum control of Bose-Einstein condensates in magnetic microtraps. Phys. Rev. A 75, 023602 (2007).
- [32]
- G. Jäger, D. M. Reich, M. H. Goerz, C. P. Koch and U. Hohenester. Optimal quantum control of Bose-Einstein condensates in magnetic microtraps: Comparison of GRAPE and Krotov optimization schemes. Phys. Rev. A 90, 033628 (2014).
- [33]
- C. F. Van Loan. Computing integrals involving the matrix exponential. IEEE Trans. Automat. Contr. 23, 395 (1978).
- [34]
- S. G. Schirmer and P. de Fouquieres. Efficient algorithms for optimal control of quantum dynamics: the Krotov method unencumbered. New J. Phys. 13, 073029 (2011).
- [35]
- J. P. Palao, R. Kosloff and C. P. Koch. Protecting Coherence in Optimal Control Theory: State-Dependent Constraint Approach. Phys. Rev. A 77, 063412 (2008).
- [36]
- C. Zhu, R. H. Byrd, P. Lu and J. Nocedal. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. 23, 550 (1997).
- [37]
- Y. Qi and contributors. LBFGSB: Julia wrapper for L-BFGS-B Nonlinear Optimization Code (2022).